AD-A137 032 A THEQRY OF DIAGNOSTIC INFERENCE: CONTRACT FINAL REPORT 171
(U) CHICAGO UNIV IL CENTER FOR DECISION RESEARCH
. H J EINHORN ET AL. NOV 83 TR-8 N00014-81-K-0314
UNCLASSIFIED F/G S5/10

END
pare
fLneD
2-84
o




e 1

o

t | X
s -~
= %
li2s s e

MICROCOPY RESOLUTION TEST CHART

DF STANDARDN (965 A

NATIONAL  BURE AU







L e T N AT WLE A L

A THEORY OF DIAGROSTIC IMFERENCE:
CONTRACT FINAL REPORT

Hillel J. Einhorn and Robin M. Hogarth
University of Chicago
Graduate School of Business
Center for Decision Research

November 1983

Sponsorxed by:
Office of Naval Research
Contract Number, N00014-81-K-0314
Work Unit Number, NR 197-071

Approved for public release; distribution unlimited. Reproduction in whole or
in part is permitted for any purpose of the United States Government.

BAL
JAN2O 1084

|
i

7 @ i T

o SR T LY o

s




SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

[T REBGRY WUNBER

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subiitle)

A Theory of Diagnostic Inference:
Contract Final Report

A
7. AUTHOR(s)

2. GOVT ACCESSION NO|
8

S. TYPE OF REPORT & PEMOD COVERED

Technical Report

6. PERFORMING ORG. REPORT NUMBER

Hillel J. Einhorn and Robin M. Hogarth

8. CONTRACT OR GRANT NUM e) |

NO0014-81-K-0314

3. PCRFORMING ORGANIZATION NAME AND ADDRESS

Center for Decision Research, Graduate School
of Business, University of Chicago, 1101 East
58th Street, Chicago, Illinois 60637

A & WOR NIT NUMD

NR 197-071

#
10. PROG!AM II.I ENT, ROJ!RC‘T TASK

1. CONTROLLING OFFICE NAME AND ADDRESS
Office of Naval Research

800 North Quincy Street
Arlington, Virginia 22217

12. REPORT DATE
November 1983

15. NUMBER OF PAGES
35

ITTGONITORING AGENCY NAME & AODRESS(I! different from Controlfing Office)

18. SECURITY CLASS. (of this report)

Unclassified

T8a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

| e e
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbatract entered in Black 20, if different from Report)

18. SUPPLEMENTARY NOTES

inference, and uncertainty.

19. XEY WORDS (Continue on reverse side if necessary and identily by block mamber)

Ambiguity, causal judgment, decision making, diagnosis, probabilistic

s

v

|

of April 1, 1981 through September 30, 1983.

20. ADSTRACT (Centinue en reverse side If necescary and identily by block mh?’

This report summarizes research aimed ay/ developing a theory of
diagnostic inference carried out during the g-month contract period

The essential aspects of

. e o
diagnostic inference are that they are causal rather than correlational, — )
oD ”m ,, 1473 :o:no‘n or L"v €8 i3 OBSOLETE Unclassified
/N 0102- LA 014- 8601 SECURITY CLABBFICATION OF THIS PAGE (When Dora ntered)

e - S .,‘r
[ [ - > i




Unclassified
M
\X SRCUMTY CLASIFICATION OF THIS PASE (Then Dase Satereg

UGP\ 20.

~ backward rather than forward (cne goes from effects to prior causes),
concerned with a specific rather than the general case, and construc-
tive (one can synthesize, enlarge, or otherwise develop new hypotheses).
We have developed and tested models of two aspects of diagnostic infer-
in!eter;ce: ‘(/Q judgments of the causal strength of a hypothesis/
explanation, and (K) how probabilistic assessments concerning the
occurrence of a past event are made on the basis of (often conflicting)
evidence received from less than perfectly reliable sources. The psycho-
logical rationales, quantitative formulations, and implications of these
models are presented in this report together with a description of various
experinents designed to test the models. We also discuss several
commonalities between the two lines of research: the use of cognitive
anchoring-and~adjustment strategies to cope with complex inference
taska; the constructive nature of diagnosis; the importance of surprise
in inference; and the relation of the present work to normative standards
of judgment and choice.

4
i
\

S e soaenr | S

$/N 0102« L& 014- 4400

Unclassified
SECUMTY CLAGRPICATION OF THIS PAGE(Thon Date Sntored

- — < % e e




B

TABLE OF CONTENTS

Judgments of CRUBALLItY.ccctcecttvectetcrsesssctcsssnnsonsvsesaccosses 2
The role of alternatives....ccscsvsesscovessssescsssccsncsssss 3
The causal backgroundicccscoessesestcscocvsosssccnsosvsecovccccss 7
CUeB=~tO~CAUBALILY . ccoeevrcsrssonssssnssstsasssscscscsasssssscas 8
Experimental evidence...cccecsscsctscsscssscrcrsssctcscsccncas 9
Evaluoating Rvidence under Mbigolty. .. ..ccicceeescvcsccsctncccccnces 10
Tagk description...ccevecevoeceacsnsecsrsetcecssecncasccseccsee 11
A model for ambiguous inferenceS..ccccccessesscscssasscessasas 12
BExperimental evidence...ccicecevscrescsctesccsccascrcssccseces 13
Some CommODAlities. ....cocvctveereccrccccreteccsasanssssssssenccace 15
Anchoring-and-adjustment strategies....cc.cceevrsceesssssscces 15
Construction in A1agnoSiB.csscvcsscicnssstvcccssocccscssssncceas 16
Surprise in inference....c.cccecveecsecscsscccssssssasscassnss 16
NOoXrmative 1sBuesS...ccccvvcocssccsscsssnsnsssossssesscncasssoace 17
Technical Reports and Publications Related to this Contract........ 19

MIMtI l.lld &!1‘!“‘.‘]110 erl.---....-...............-- 21 “

NTIS GRA&I ~—~ Ap .
DTIC TAR Q

o=

Uu.':unmmcod *\ i
Justification._ﬁf ' ;
——\‘.._.,‘ %

4

y ¥
‘lestribution/ R !

Avﬁq}lability Codresw '
Avail apndgjep ~T

Dist Special i

1A/

o e e

B U SO
TETIIE OO TV




Introduction

This report summarizes our work on developing a theory of diagnostic
inference for the period April 1, 1981 through September 30, 1983. By

diagnosis, we mean the following: Given the occurrence of a set of outcomes/

results/symptoms, people infer what causal process could have produced the
observed effects. The essential aspects of such inferences are that they are
causal rather than correlational, backward rather than forward (one goes from
effects to prior causes), concerned with a specific rather than the general
case, and constructive (one can synthesize, enlarqe, or otherwise develop new
hypotheses). The importance of 4diagnosis goes beyond its obvious role in
making sense of experience; it is crucial for predictive judgment as well as
for defining what variables are "relevant." Moreover, since the evidence
typically available for making diagnoses is fallible and/or conflicting, the
process takes place under uncertainty.

The development of our theory has followed two complementary patha:
(1) The formulation and testing of a theoxry of how causal judgments are made;

and (2) the creation of a theory of evidence that concerns how judgments are

made in ambiguous situations. We consider each of these topics in turn.

Subsequently, we discuss some commonalities between the two lines of research.

B

Judgaents of Causality
We have developed, and experimentally tested, a model of how people judge
the causal strength of a hypothesis/explanation. As a specific illustration,
imagine that a watch face has been struck sharply by a hammer and the glass
breaks. You are then asked to assess how likely the breakage was caused by
the force of the hammer. We argue that answers to this question will be

mediated by three types of information: (1) The number and strength of




o

specific alternative explanations. Part of the reason that the force of the

hammer is a strong causal candidate is due to the fact that it is difficult to
imagine specific alternatives that could reduce one's belief in that explana~

tion; (2) The assumed causal background against which the judgment is made.

For example, reconsider your response to the above question if the context was
changed to a watch factory where a hammer strikes watch faces as part of a

testing procedure. 1In this context, it is more likely that a defect in the

glass will be judged to be the cause; (3) The judged causal strength of the

explanation. We maintain that people use certain cues-to-causality in
assaessing the plausibility of an explanation; namely, temporal order,
contiguity, covariation, and similarity of cause and effect. In our example,
note that the glass broke immediately after being struck by the hammer; there
is a high correlation between the breaking (or not) of glass with the force of
solid objects; and there is similarity between the length and strength of

cauge and effect.

The role of alternatives

Causal judgments are complex. We therefore propose that people handle

this task sequentially by a cognitive anchoring-and-adjustment strategy. This
can be illustrated by consic ring how people adjust causal beliefs by the

number and plausibility of specific alternative explanations. Consider an
outcome Y, an initial explanation X, and alternative explanation Z,.
Furthermore, denote the "gross strength” of an explanation as being its
plausibility or strength before competing alternatives are considered. Thus,
the gross strengths of X and 24 rafer to their plausibility when each is
considered the sole explanation of Y. We proposs that people anchor on the

gross strength of the initial explanation X, and then adjust downward for

the gross strength of Z,. Moreover, the amount of the adjustment will depend f




on the strength of the anchor as well as the strength of the alternative. 1In
particular, we assume that alternatives of equal strength discount strong
explanations more than weaker ones. For example, imagine that one anchors on
a weak hypothesis and is then confronted with a strong alternative. Since the
anchor is already low, the size of the adjustment cannot be too large (indeed,
if the anchor were worthlessa, there would be no adjustment). On the other
hand, if the anchor was strong, we argue that the same alternative would
discount the anchor substantially. Therefore, the basic idea is that the
stronger the anchor, the larger the adjustment (holding the strength of
alternatives equal). We call the strength of an explanation after it is
reduced by an alternative, its "net strength.”

The above process can be formally represented as follows:

$,(¥,x|B) = s (¥,X|B) - w_ s(v,2,]B) (1

where,

S,(Y:X|B) = net strength of the causal link of ¥
with X, conditional on background B,
after adjusting for 21

so(Y,x|B) = gross strength of the causal link of
Y with X, conditional on background B

gross strength of the causal link of Y

s(1,z,|B)
with Z40 conditional on background B

v, = adjustment weight applied to the groas
strength of z, (0 < w< 1)
In equation (1) we adopt the convention that capital "S" stands for net
strength and small "s" denotes gross strength. Of course, before any alter-
native is considered, S, = s, Note that the adjustment weight, w, has the

same subscript as the anchor since it is a function of the latter. Now
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consider what happens when a second alternative, zz, is introduced. We
assume that the anchor-and-adjust strategy proceeds sequentially so that the

net strength of X becomes the new anchor for the next adjustment. Thus,
5,(Y.X|B) = §,(v,X|B) - w, s(¥,3,[B) (2)

Equation (2) can be be generalized to account for the net strength of X

after the kth alternative (k = 1,2, ..., K); thus,
S (Y,X|B) = 5, _ (¥,x|B) ~ w _, s(¥,2|B) (3)

Purthermore, since Sk(Y,x|B) is a judged likelihood, it is bounded between 0
and 1.

Now consider the functional relation between the strength of the anchor
and the adjustment weight, w (called the “adjustment weight function"). It
was assumed above that sttonger anchors have larger adjustments. This implies
that the adjustment weight is a monotonically increasing function of the
strength of the anchor. To see this, consider equation (3) when the gross
strength of 2y 18 constant and the anchor varies in strength. It is clear

that as sk_1(Y,x B) increases, must also increase to give larger

k-1
adjustments. To model this monotonic relation, we posit a simple and

convenient form, although others might serve as well; thus,

a
ey = [S_,(¥.x|B)) (a > 0) (4)
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Equation (4) is illustrated in Figure 1. Note that a affects the amount by

Ingert Figure 1 about hegé

which explanations are discounted and can thus be thought of as varying as a
function of task and/or individual characteristics. For example, o > 1
implies that the adjustment weights are less than the anchor and corresponds
to underweighting the impact of disconfirming evidence; a = 1 implies that
adjustment weights equal the anchor; 0 < a < 1 implies that adjustment
weights are larger than the anchor. The importance of this for the final net

strength of X can be seen by first substituting (4) into (3). This yields:
a
S (Y.X{B) = 5, _,(v,x|B) - [5,_,(v.x|®)]% s(¥,2,[8) (5)

which can be thought of as the computational form of the anchor~and-adjust
model. Indeed, as we have demonstrated empirically (see below), when a is
estimated from data, equation (5) can be used to predict how people revise
their causal judgments.

To illustrate how the model specified in (3) and (5) captures important
aspects of the causal judgment process, consider the model in its non-

sequential form;
K
sx(Y.xln) - so(Y.x|B) - k£1 Yie-q s(Y,zk'B) (6)

That is, the net strength of an explanation is equal to its gross strength
minus the sum of the adjusted alternative explanations. In other words, we
posit that net strength follows a difference model as opposed to a ratio

model such as probability theory. This means that net strength can be low

when there are no alternatives if the gross strength of X is itself low.




S,.,(v.x|B)

Figure 1. The Adjustment Weight Function




Moreover, net strength can also be low when gross strength is high if there
are many strong alternatives. Indeed, net strength can only be high if gross
strength is high and the strength of specific alternatives is low. For
example, reconsider the initial watch~hammer scenario and contrast the net
strength of the "force of the hammer” explanation with the net strength of any
single explanation for the foliowing questions:
1. Why are the outer rings of Saturn braided?
2. Why was Ronald Reagan elected President in 19807

Por the first question, it is difficult to generate a single explanation,
thus suggesting its gross strength is low However, although there are no
competing explanations, net strength remains low in accord with equation
(6). For the second question, there are many strong explanations (e.g., the
situation of the economy; the rise of the moral majority; the unresolved
Iranian hostage problem; etc.). Therefore, while the gross strength of these
are high, the net strength for any single one is low precisely because the
others are plausible alternatives. On the other hand, the watch-hammer
question leads to high net strength since the explanation is strong and there
are few plausible alternatives. 1In short, it is argued that like c¢»od
patterns, good explanations have few alternatives; or, to be more precise,
whereas good explanations imply few alternatives, the lack of alternatives

does not imply good explanations.

The causal background

Above, we have been careful to condition all terms on the causal back-~
ground, B. We do this because diagnostic inference is typically invoked to
make senge of deviations via causal explanation. However, the meaning of a

deviation is itself crucially dependent on some assumed background or field.

Specifically, we arque that causal relevance is generally related to the




degree that a variable ia a difference-in-a-background. By this is meant that
factors that are part of some presumed background are judged to be of little
or no causal relevance. For example, does birth cause death? Wwhile the
former is both necessary and sufficient for the latter (and thus covaries
perfectly with it), it seems odd to consider one the cause of the other. The
reason is that death presumes that one has been born. Therefore, "birth” is

part of the background and its causal relevance is lca.

Cues-to—causality

In our model, the judged plausibility of a hypothesis/alternative (i.e.,
gross strength) is based on cues-to-causality. These are postulated to be
imperfect indicators of causal relations that combine and trade-off in judg~

ments of gross strength. Specifically, we define gross strength to be the

following function of the cues-to-causality;

s(¥,X[B) = Q. ¥(A 0, + 1,0, + 100 (7)
where,

Q1 = temporal order = (0,1)
92 = contiguity
Q3 = covariation

similarity

0
&
[}

0 if 94 < threshold
Y-
1 if otherwise

Ai = importance weight for the ith cue (i = 1, ..., 4)

Note that if either temporal order is inappropriate or similarity is

below threshold, gross strength is zero. Otherwise, the cues of contiguity,

covariation, and similarity will trade-off.




Experimental evidence

Three types of experiment have been performed to test (1) the role of

PRRASRUE WIS WA i

alternatives via the sequential anchor-and-adjust model, (2) the use of the

cues-to-causality, and (3) the causal field concept. F
(1) Bquation (5) was estimated and tested on data where subjects were

first asked to judge the gross strength of a hypothesis, and then assess its

net strength after sequential presentation of two specific alternatives. 1In

fact, the initial gross strength judgment and first assessment of net strength

wers used to estimate the a parameter, and the second net strength judgment

was predicted on this basis. Across different permatations of hypotheses and
alternatives in two scenarios, the mean absolute deviation was a mere .02 for
judgments made on a 0 to 1 scale.

(2) A second series of experiments tested the role of the cues-to-
causality as operationalized in equation (7). Three cues, contiquity,
covariation, and similarity were varied factorially across 8 scenarios.

Results showed predicted main effects for covariation and similarity but not

contiquity. Furthermore, the data revealed interesting interactions between :
the cues and the scenarios thereby emphasizing the notion that the cues are
perceived conditionally on the context or causal field in which they are
embedded. In a second experiment, when the contiguity cue was manipulated to
be more salient in the scenarios, significant main effects of the predicted
sign were observed. In these experiments subjects not only judged a causal

candidate, but made subsequent judgments after being informed of the presence )

of specific alternatives. This permitted two further tests of our model:
(a) predictions using equation (5); and (b) a test of the similarity threshold
hypothesis implicit in equation (7). 1In both cases, our hypotheses were

supported by the data.
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(3) Recall the example given above of the hammer hitting the face of a
watch when no explicit context is provided and when the scene is supposed to
take place in a watch factory. The effact of this shift in the causal
background, with its corresponding change in the strength of causal candidates
(the force of the hammer vs. a defect in the glass) was tested experimentally
in both a between- and within-subjects design. The results provided strong
support for the notion that shifts in the background can have dramatic effects
on attributions of causality.

To summarize, the three components of our model (role of alternatives,
cues-to-causality, and background) were tested and found to support our con-
ceptualization. Whereas we clearly do not claim that our model provides a
complete picture of the myriad issues involved in causal judgment, it does
provide a solid, and parsimonious foundation on which to build. Purthermore,
our model can be shown to subaume, and even quantify, earlier attempts to

conceptualize causal judgment, e.g., various attribution theories

Bvaluating Evidence under Ambiguity

An important input to diagnostic inference is the evaluation of evidence.
Moreover, this usually takes place under conditions of uncertainty thereby
invoking probabilistic reasoning. However, in an important paper Daniel
Ellsberg demonstrated that subjective probabilities inferred from choices
amongst gambles do not necessarily conform to the axioms of probability
theory. Specifically, Ellsberg showed that such violations are likely to
occur in ambiguous conditions where lack of knowledge about the process
generating outcomes induces uncertainty about one's own degree of uncer-
tainty. Contrast, for example, the nature of the uncertainty one faces in
choosing between heads or tails on the flip of a fair coin as opposed to the

uncertainties involved in deciding between two candidates for President.

- .ol
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Task description

The task we have aexplored requires subjects to assess the likelihood that
a particular event happened given £ reports favoring its occurrence and ¢
reports favoring an alternative. The reports are deemed to emanate from a
single source (e.g., witnesses) and to carry equal weight. A model of the
task is depicted in Figure 2. That is, (1) an event occurs, (2) it is sensed

by a source that can, in principle, be characterized by levels of sensitivity

Ingert Figure 2 about here

and bias, (3) the source decides what to report (this can be thought of as
analogous to a signal detection task), (4) several reports are obtained, and
(5) the judge combines the reports with expectations based on the content of
the scenario to come up with a likelihood judgment, S(f:c). It is important
to note that in our task no explicit information is given to the subjects
about the reliability (sensitivity, bias) of the reporting source. Rather,
this must be inferred from the content of the scenarios. Thus, expectations
held by the subjects (5) are inferred from ambiguous stimuli.

The importance of ambiguity in our task can be emphasized by contrasting
it with more commonly studied probabilistic paradigms: (a) whereas we are
dealing with inference from unreliable sources, this is not the standard cas-
caded inference task in that the judge does not know the precise level of the
source's reliability; (b) we cannot apply the theory of signal detection since
too many parameters are unknown (e.g., the source's hit-rate and false-alarm
rate). We have, inatead, a case of several observers reporting on one event
(trial) as opposed to multiple trials of the same observer; and (c¢) the
standard Bayesian paradigm cannot be applied gsince no values are given either
for the prior probabilities of events or source reliability. However, since

precise probabilities are not available in many important real-world problems,
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we believe that the ambiguity inherent in our task is both realistic and

important.

A model for ambiguous inferences

Our model of how people handle the above task involves anchoring on the
evidence presented (“what ia”) and adjusting for outcomes that one could
imagine occurring ("what might have been"). That is;

8(f:c) = p + k (8)
where p = f/n, the proportion of reports favoring the hypothesis, and k
captures the net effect of imagining (i.e., mentally simulating) alternative
outcomes greater and smaller than p. Specifically, we postulate that k
will be affected by four variables: (1) the level of p since if p = 1,
k< 0; but if p=0, k » 0; (2) n, the number of reports; (3) a parameter
€ that reflacts the perceived lack of credibility of the source and dissimi-
larity of the qignals (0< ©6< n); and (4) the effect of differentially
weighting imagined outcomes greater and smaller than p. This is captured by
a parameter 8. The full model is;

S(f:¢c) =p + 2 (1 -p - ps) (9)

=110}

and is illustrated in Pigure 3. Note that the abaolute size of the adjustment

Insert Figure 3 about her;

from p increases in O but decreases in n. RNote further that S(f:c) 1is
regressive with respect to p. Moreover, the parameter £ implies a unique
value of p, denoted pcr £or which k = 0 and thus where S(f:c) = p. We
interpret B as the individual's "attitude toward ambiguity in the circum-

stances.” In summary, note that when (f/n) = p < Pe, k> 0 so that S(f:c)

> pi however, when (f/n) = p > per k < 0 so that 8(f:c) < p.
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Figure 3. Two examples of S(f:c) as a function of p.
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Experimental evidence ]

We have tested our model and its implications in a series of four
experiments.

(1) Using a scenario involving a hit-and-run accident and witnesses'
conflicting responses as to the color of the offending car, we have tested
and fitted equation (9) on both group and individual data. We have (a) demon-
strated how subjects trade-off p and n in assessing the impact of

evidence, and (b) as implied by our model, subjects' judgments of the

probabilities of complementary events do not necessarily sum to one. More
specifically, the parameters of our model (i.e., © and B8) define the
conditions under which such judgments will be additive (i.e., sum to one),
sub-additive, or super~-additive. Moreover, our data bear out these
predictions for both groups and individual subjects.

(2) In a replication experiment we demonstrated the validity of the
model over four additional scenarios involving different content.

(3) In a factorial experiment, we manipulated both the credibility and
dissimilarity of the sources of evidence in order to induce dAifferences in the
© and B parameters. Source credibility was seen to have a significant
effect on both parameters (i.e., on the means of the parameters of individual
subjects), but no effect was obgserved for source digsimilarity. Moreover,
these results were obtained in both between- and within-gubject designs. 1In
addition, we investigated and found consistent individual differences in
subjects’ judgmental strategies. That is, subjects' individual ©6 and B8
parameters were significantly correlated across tasks involving different
scenarios. In addition, the extent to which subjects made adjustments for

"what might have been,” as measured by their © parameters, was significantly

related to the mean absolute deviations between their actual judgments and
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model predictions. We interpret this finding as evidence that the ability to

execute a judgmental strategy consistently is inversely related to the amount
of mental simulation used in generating responses.

(4) We investigated whether individuals' choices between gambles could
be predicted from knowledge of their O and B parameters estimated from a
separate inference task. Not only did we find that such choices between
gambles could be predicted quite well, but strength of preference between
gambles was related to the © and £ parameters in a theoretically
consistent manner.

To summarize, our experimental data support our descriptive model of how
people handle the ambiguity inherent in a diagnostic inference task via a
cognitive anchoring-and-adjustment strateqy. We believe that the success of
our modeling efforts underscores the importance of incorporating the effects
of ambiquity in the perception of uncertainty as well as on risky choice.
Important real-world risks are rarely defined explicitly (i.e., unambiguously)
and thus it is essential to understand how people treat ambiguous evidence.
Second, in trying to analyze our subjects’' inference task from a normative
perspective, we were struck by the number of assumptions one would need to
make to apply an appropriate model, let alone the need for computation such a
model would impose. And yet, our subjects were able to provide consistent
respongses to the experimental stimuli by essentially striking a compromise
between “"what was” (i.e., the data) and “what might have been” (i.e., the
result of the imagined outcomes) via a quite simple cognitive strateqy. 1In
addition, whereas the subjects' judgments deviated consistently from some
normative prescriptions, it would be difficult to say that they were not

acting sensibly.

T




Some Commonalities

The development of our theory of diagnostic inference has followed two
complementary paths. We now discuss some commonalities between these two &

lines of research.

(1) Anchoring-and-adjustment strategies. Both our models are based on £
the notion that people use cognitive anchoring-and-adjustment strategies to
handle complex inference tasks. In the causal model, it is assumed that

people anchor on the gross strength of the hypothesis and then adjust,

sequentially, for the strength of specific alternatives. Moreover, we posit
that the adjustment weight at each stage is a function of the associated

anchor. In the ambiguity model, there is also an adjustment for alternatives
that "might have been.” Note that in both models the assumed details of the

anchoring-and~adjustment processes have been made quite explicit. More

generally, we believe that anchoring-and-adjustment strategies are prevalent
in many sequential judgment tasks. Thus, the payoff from investigating such
strategies carefully in these tasks could also be substantial in other areas
of judgment and choicae.

(2) Construction in diagnosis. Diagnosis is largely a constructive

activity. This is particularly evident in the causal model when one examines
the role of the causal background. People respond very quickly to cues in the
causal background that allow them to shift the perspective within which a
problem is viewed (recall the hammer and watch face example). In the ambi-
guity model, expectations and imagination clearly play important roles in
simulating "what might have been.” Neither of our models could be said to
provids an account of construction in the diagnostic process. However, since
both models incorporate some aspects of construction, they do provide a

foundation upon which this crucial cognitive activity can be investigated.




(3) Surprise in inference. Our models can also be thought of as

throwing some light on the importance of surprise in diagnostic inference.
Surprise is a reaction to discrepancies between expectations and reality.
Thug, in the causal model we note that surprise, in the form of deviations-in-
a-field, is an important stimulus to diagnostic activity. Also, since the
cues-to—-causality can induce expectations, when these are violated the
resulting surprise will trigger diagnostic activity and attempts to rein-
terpret experience. 1In the context of the ambigquity model, we note that data
can create surprise (relative to expectations) either because they are “too
good” or "not good enocugh.” Indeed, when data are perceived to reach a given
level of unreliability, our model predicts that if data are “"too good," the
surface meaning will suggest the opposite conclusion. To illustrate, consider
your reaction if you were assessing whether a particular car had been speeding
(i.e., travelling at more than 55 m.p.h.) and 10 eyewitnesses each indepen-
dently stated that the car had been travelling at 73 m.p.h. Both the complete
agreement of the witnesses and the level of precision of their responses are
such that you would probably dismiss the data. From equation (9), and
assuming that © (the source unreliability parameter is at its maximum of
n), wa obtain

s(f:c) = 1 - pb (10)
which, since p = (f/n) = 1 (all witnesses agreed) becomes 0. 1In other
words, when high source unreliability is attributed to witnesges, our model
specifically predicts a constructive rejection of the evidence. On the
other hand, our model cannot handle situations where data are "not good
enough” since the resolution of this type of surprise requires a creative

re-organigation of the hypotheses being considered. This extension is one of

several challenges for future work.
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(4) Normative issues. In research on judgment and decision making it is 1

almost mandatory to compare subjects' responses with normative benchmarks. ;
However, this is problematic in the present research. First, there is no ]
normative theory for judgments of causality. Second, it is unclear what the
normative model should be in reference to our model of judgment under ambi- i
guity. To be sure, the latter model deviates from Bayesian prescriptions in
two respects: (1) as n increases judgments asymptote at p instead of 0

or 1. However, this result can also be obtained in some cascaded inference ;

models that are based on Bayes’ theorem; (2) under certain circumstances,
judgments of the probabilities of complementary events do not sum to one in

our model. Whereas this possibility might be considered a "mistake,” we note

that there is currently considerable interest in the normative status of non-
additive probabilities, the role of the "weight of evidence” in determining
probabilistic belief, and so on. Our descriptive model, however, specifies
the precise conditions under which additivity/non-additivity will occur, and
in doing so captures how people respond to the "weight of evidence™ in their
judgments.

Given the lack of a normative theory of causality, what contribution can
our model of causal judgment make to assessing the quality of diagnostic
inference? Whereas we have no definitive answer to this question, we note
that our model does highlight two relevant trade-offs. First, our
conceptualization of the cues-to-causality posits that these are imperfect,
probabilistic indicators of causal relations. Thus, whereas the cues will
indicate appropriate causal relations in the environment, they can also
indicate invalid relations thereby inducing mistaken beliefs. For a limited

organism dealing with a vastly more complex environment, it is certainly

appropriate to deal consistently with a limited number of cues-~to-causality,




and particularly since these can combine in myriad ways. On the other hand,

the use of these cues will inevitably imply a trade-off between acquiring some
valid causal knowledge, on the one hand, and some superstitions, on the other.

Second, the causal field and the cues-to-causality both play an important
role in limiting the number of interpretations people make in inferential
tasks, and thus in creating "order-out-of-chaos." Furthermore, the adoption
of a particular background and the use of the cues proceed quickly and are
often marked by a lack of awareness that a delimiting process has taken
place. The benefits to be gained from such automatized processes are large.
However, they come at the cost of reducing the probability that people can
achieve more creative representations of inferential tasks. In short, the
organism may often face a trade-off between stable representations of
problems, on the one hand, and the possibility of generating more creative
representations of the same stimuli, on the other.

Finally, whereas this report has described the work accomplished to date
in the construction of our theory of diagnostic inference, it should be
realized that a comprehensive theory is far from complete. However, we do
believe that we now have solid foundations on which to examine both the
psychology of causal reasoning and the interpretation of fallible, conflicting

evidence. It is on these foundations that we are extending our theoretical

and empirical investigations.
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